DAAM1 stabilizes epithelial junctions by restraining WAVE complex–dependent lateral membrane motility
نویسندگان
چکیده
Epithelial junctions comprise two subdomains, the apical junctional complex (AJC) and the adjacent lateral membrane contacts (LCs), that span the majority of the junction. The AJC is lined with circumferential actin cables, whereas the LCs are associated with less-organized actin filaments whose roles are elusive. We found that DAAM1, a formin family actin regulator, accumulated at the LCs, and its depletion caused dispersion of actin filaments at these sites while hardly affecting circumferential actin cables. DAAM1 loss enhanced the motility of LC-forming membranes, leading to their invasion of neighboring cell layers, as well as disruption of polarized epithelial layers. We found that components of the WAVE complex and its downstream targets were required for the elevation of LC motility caused by DAAM1 loss. These findings suggest that the LC membranes are motile by nature because of the WAVE complex, but DAAM1-mediated actin regulation normally restrains this motility, thereby stabilizing epithelial architecture, and that DAAM1 loss evokes invasive abilities of epithelial cells.
منابع مشابه
Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network
A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 w...
متن کاملSec3-containing Exocyst Complex Is Required for Desmosome Assembly in Mammalian Epithelial Cells
The Exocyst is a conserved multisubunit complex involved in the docking of post-Golgi transport vesicles to sites of membrane remodeling during cellular processes such as polarization, migration, and division. In mammalian epithelial cells, Exocyst complexes are recruited to nascent sites of cell-cell contact in response to E-cadherin-mediated adhesive interactions, and this event is an importa...
متن کاملCharacterization of mammalian exocyst subunit Sec3
The Exocyst is a conserved multi-subunit complex involved in the docking of post-Golgi transport vesicles to sites of membrane remodeling during cellular processes such as polarization, migration and division. In mammalian epithelial cells, Exocyst complexes are recruited to nascent sites of cell-cell contact in response to E-cadherinmediated adhesive interactions, and this event is an importan...
متن کاملPLEKHA7 modulates epithelial tight junction barrier function
PLEKHA7 is a recently identified protein of the epithelial zonula adhaerens (ZA), and is part of a protein complex that stabilizes the ZA, by linking it to microtubules. Since the ZA is important in the assembly and disassembly of tight junctions (TJ), we asked whether PLEKHA7 is involved in modulating epithelial TJ barrier function. We generated clonal MDCK cell lines in which one of four diff...
متن کاملRegulation of epithelial junctions by proteins of the ADP-ribosylation factor family.
ADP- ribosylation factor (ARF) proteins play a pivotal role in the regulation of membrane traffic and the organization of the cytoskeleton that are crucial to fundamental cellular processes, such as intracellular sorting/trafficking of newly synthesized proteins and endocytosis/exocytosis. In epithelial junctions, the ARF proteins are intimately associated with the dynamics of transmembrane pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 215 شماره
صفحات -
تاریخ انتشار 2016